Real-Time 3D Routing Optimization for Unmanned Aerial Vehicle using Machine Learning

Author:

Mishra Priya,Boopal Balaji,Mishra Naveen

Abstract

In the realm of Unmanned Aerial Vehicles (UAVs) for civilian applications, the surge in demand has underscored the need for sophisticated technologies. The integration of Unmanned Aerial Systems (UAS) with Artificial Intelligence (AI) has become paramount to address challenges in urban environments, particularly those involving obstacle collision risks. These UAVs are equipped with advanced sensor arrays, incorporating LiDAR and computer vision technologies. The AI algorithm undergoes comprehensive training on an embedded machine, fostering the development of a robust spatial perception model. This model enables the UAV to interpret and navigate through the intricate urban landscape with a human-like understanding of its surroundings. During mission execution, the AI-driven perception system detects and localizes objects, ensuring real-time awareness. This study proposes an innovative real-time three-dimensional (3D) path planner designed to optimize UAV trajectories through obstacle-laden environments. The path planner leverages a heuristic A* algorithm, a widely recognized search algorithm in artificial intelligence. A distinguishing feature of this proposed path planner is its ability to operate without the need to store frontier nodes in memory, diverging from conventional A* implementations. Instead, it relies on relative object positions obtained from the perception system, employing advanced techniques in simultaneous localization and mapping (SLAM). This approach ensures the generation of collision-free paths, enhancing the UAV's navigational efficiency. Moreover, the proposed path planner undergoes rigorous validation through Software-In-The-Loop (SITL) simulations in constrained environments, leveraging high-fidelity UAV dynamics models. Preliminary real flight tests are conducted to assess the real-world applicability of the system, considering factors such as wind disturbances and dynamic obstacles. The results showcase the path planner's effectiveness in providing swift and accurate guidance, thereby establishing its viability for real-time UAV missions in complex urban scenarios.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3