Digital Visual Design Reengineering and Application Based on K-means Clustering Algorithm

Author:

Ren Lijie,Kim Hyunsuk

Abstract

INTRODUCTION: The article discusses the key steps in digital visual design reengineering, with a special emphasis on the importance of information decoding and feature extraction for flat cultural heritage. These processes not only minimize damage to the aesthetic heritage itself but also feature high quality, efficiency, and recyclability.OBJECTIVES: The aim of the article is to explore the issues of gene extraction methods in digital visual design reengineering, proposing a visual gene extraction method through an improved K-means clustering algorithm.METHODS: A visual gene extraction method based on an improved K-means clustering algorithm is proposed. Initially analyzing the digital visual design reengineering process, combined with a color extraction method using the improved JSO algorithm-based K-means clustering algorithm, a gene extraction and clustering method for digital visual design reengineering is proposed and validated through experiments.RESULT: The results show that the proposed method improves the accuracy, robustness, and real-time performance of clustering. Through comparative analysis with Dunhuang murals, the effectiveness of the color extraction method based on the K-means-JSO algorithm in the application of digital visual design reengineering is verified. The method based on the K-means-GWO algorithm performs best in terms of average clustering time and standard deviation. The optimization curve of color extraction based on the K-means-JSO algorithm converges faster and with better accuracy compared to the K-means-ABC, K-means-GWO, K-means-DE, K-means-CMAES, and K-means-WWCD algorithms.CONCLUSION: The color extraction method of the K-means clustering algorithm improved by the JSO algorithm proposed in this paper solves the problems of insufficient standardization in feature selection, lack of generalization ability, and inefficiency in visual gene extraction methods.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3