Robustness of Classification Algorithm in the Face of Label Noise

Author:

ZHAO Jiawei,KANG Mengyao,HAN Zheng

Abstract

Label noise is an important part in the process of machine learning. Transition matrix provides an effective way to reduce the impact of label noise on classification algorithm. In this experiment, we study logistic regression algorithm and random forest algorithm. We use the known real transition matrix to evaluate the robustness of the algorithm on two datasets. We also design a transition matrix estimator to estimate the transition matrix of three datasets and evaluate the robustness of the two algorithms. We use average error to evaluate the effectiveness of the transition matrix estimator and the top-1 accuracy to evaluate our method.

Publisher

European Alliance for Innovation n.o.

Subject

General Chemical Engineering

Reference6 articles.

1. Algan, G., & Ulusoy, I. (2020). Label noise types and their effects on deep learning. arXiv preprint arXiv:2003.10471.

2. Díaz, A., & Steele, D. (2021). Analysis of classifiers robust to noisy labels. arXiv preprint arXiv:2106.00274.

3. Frénay, B., & Verleysen, M. (2013). Classification in the presence of label noise: a survey. IEEE transactions on neural networks and learning systems, 25(5), 845-869.

4. Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., ... & Sugiyama, M. (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural information processing systems, 31.

5. Hou, T., Zheng, G., Zhang, P., Jia, J., Li, J., Xie, L., Wei, C., & Li, Y. (2014). LAceP: lysine acetylation site prediction using logistic regression classifiers. PloS one, 9(2), e89575.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3