1. Algan, G., & Ulusoy, I. (2020). Label noise types and their effects on deep learning. arXiv preprint arXiv:2003.10471.
2. Díaz, A., & Steele, D. (2021). Analysis of classifiers robust to noisy labels. arXiv preprint arXiv:2106.00274.
3. Frénay, B., & Verleysen, M. (2013). Classification in the presence of label noise: a survey. IEEE transactions on neural networks and learning systems, 25(5), 845-869.
4. Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., ... & Sugiyama, M. (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural information processing systems, 31.
5. Hou, T., Zheng, G., Zhang, P., Jia, J., Li, J., Xie, L., Wei, C., & Li, Y. (2014). LAceP: lysine acetylation site prediction using logistic regression classifiers. PloS one, 9(2), e89575.