Prediction of Emergency Mobility Under Diverse IoT Availability

Author:

Sun Bin,Geng Renkang,Xu Yuan,Shen Tao

Abstract

INTRODUCTION: Prediction of emergency mobility needs to consider more scenarios as Internet of Things (IoT) develops at a high speed, which influences the quality and quantity of data, manageable resources and algorithms. OBJECTIVES: This work investigates differences in dynamic emergency mobility prediction when facing dynamic temporal IoT data with different quality and quantity considering diverse computing resources and algorithm availability. METHODS: A node construction scheme under a small range of traffic networks is adopted in this work, which can effectively convert the road to graph network structure data which has been proved to be feasible and used for the small-scale traffic network data here. Besides, two different datasets are formed using public large scale traffic network data. Representative widely used and proven algorithms from typical types of methods are selected respectively with different datasets to conduct experiments. RESULTS: The experimental results show that the graphed data and neural network algorithm can deal with the dynamic time series data with complex nodes and edges in a better way, while the non-neural network algorithm can predict the with a simple graph network structure. CONCLUSION: Our proposed graph construction with graph neural network improves dynamic emergency mobility prediction. The prediction should consider the scenarios of availability of computing resources, quantity and quality of data among other IoT features to improve the results. Later, automation and data enrichment should be improved.

Publisher

European Alliance for Innovation n.o.

Subject

Health Informatics,Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Time-Series Missing Value Imputation - Comparison of Machine Learning Methods;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Trend and Methods of IoT Sequential Data Outlier Detection;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Comparison of Machine Learning Algorithms for Sequential Dataset Prediction;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Power Sequencial Data - Forecasting Trend;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

5. On the Trend and Problems of IoT Data Anomaly Detection;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3