Comparison of Solar P&O and FLC-based MPPT Controllers & Analysis under Dynamic Conditions

Author:

Pavithra C,S Vidhyareni,M Vijayadharshini,K B Shree Akshaya,N Varsha

Abstract

Increase in electricity generation is caused due to population increase, which leads to the depletion of fossil fuels, and increased pollution. This leads to focusing on alternate renewable energy, mainly solar photovoltaic generation, due to the abundant availability. The maximum power generated by a PV module depends on the temperature and irradiance because the P-V and V-I natures are non-linear. Various DC-DC boost converters are used along with the MPPT techniques because the conversion efficiency of the PV system is low [1][2]. In this paper, comparative analysis between Perturb and Observe (P&O) and Fuzzy Logic-based Maximum Power Point Tracking (MPPT) systems along with modified SEPIC are done using MATLAB/ SIMULINK software. Simulations are done at different irradiations to observe its tracking speed towards MPP. From the obtained output (simulation), it is observed that the Fuzzy Logic Converter (FLC)-based MPPT controllers have good dynamic performance, reduced oscillation, high tracking speed, maximum power, etc...[3].

Publisher

European Alliance for Innovation n.o.

Reference25 articles.

1. Yuvarajan S, Shoeb J. A fast and accurate maximum power point tracker for PV systems. APECE. 2008; 167–172.

2. Nguyen, Lehman D Y. A Reconfigurable Solar Photovoltaic Array Under Shadow Conditions. APECE. 2008; 980-986.

3. Sergio Daher, Jurgen Schmid, and Fernando L.M Antunes. Multilevel Inverter Topologies for Stand-Alone PV Systems. IEEE Transactions on IE. 2008; 55 (7); 2703-2712.

4. Vidhya K, Ghani A, Zhou E. Modelling and simulation of maximum power point tracking algorithms and review of MPPT techniques for PV applications. ICEDSA. 2016; 1–5.

5. Nandurkar SR, Mini Rajeev. Modelling simulation & design of photovoltaic array with MPPT control techniques. IJAPE. 2014; 3(1); 41–50.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3