Optimization of indoor thermal environment based on sensor networks and multimedia assisted physics teaching

Author:

Chen Bingyue,Chen Binglian,Zhang Kang,Xu Binghui,Jiang Guoxin

Abstract

Multimedia technology combines various media elements such as text, images, sound, and video, making classroom teaching more vivid, intuitive, and interesting. This article introduces a multimedia courseware assisted physics teaching application based on sensor networks and deep learning technology. This application has two functional modules: user user end and cluster control end. On the user end, obtain user commands through the virtual machine end and share the original multimedia files using the CIFS protocol. The user command is redirected to the user end, and then the corresponding command is executed on the user end to directly transmit and play the original multimedia file. At the same time, the user end will also provide data feedback and recording for subsequent data analysis and evaluation. At the cluster control end, based on the information collected by the sensor network, an adaptive linear regression algorithm is used to predict the reference value. By analyzing and processing the collected information, the cluster control end can reasonably arrange the playback content of multimedia courseware to meet the learning needs of students. This multimedia courseware assisted physics teaching application based on sensor networks and deep learning technology provides new help and support for physics teaching.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3