Framework for Detection of Fraud at Point of Sale on Electronic Commerce sites using Logistic Regression

Author:

Alabi Bunmi,David Amos

Abstract

Many businesses have been positively impacted by electronic commerce (ecommerce). It has enabled enterprises and consumers transact business digitally and experience diversity as long as the internet is accessible and there is a gadget to surf the internet. Several governments have gradually adopted electronic payment throughout the country. The Nigerian government has also done a lot of prodding toward the adoption of a cashless economy, which includes embracing ecommerce. As ecommerce expands, so does actual and attempted fraud through this channel. According to the Nigerian Central Bank, electronic fraud reached trillions of Naira by 2021. The purpose of this work was to employ logistic regression as a decision-making tool for detecting fraud in e-commerce platforms at either the virtual or physical point of sale. The main contribution of this research is a model developed using logistic regression for detecting fraud at the point of sale on electronic commerce platforms. The accuracy of the result is 97.8 percent. The result of this study will provide key decision makers in ecommerce firms with information on fraud patterns on their ecommerce platforms, this will enable them take quick actions to forestall these fraudulent attempts. Further research should be carried out using data from other developing countries.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Reference35 articles.

1. Shahid A.B., Keshav K. & Jenifur M. “A Review Paper on E-Commerce” TIMS 2016-International Conference. Available from: https://www.researchgate.net/publication/304703920_A_Review_Paper_on_Ecommerce#:~:text=E%2Dcommerce%20(Electronic%20commerce),both%20marketers%20and%20the%20customers.

2. Global Cyber Executive Briefing E-Commerce & Online payments [Internet]. Deloitte; 2019. Available from: https://www2.deloitte.com/ng/en/pages/risk/articles/e-commerce.html.

3. Max F. “Types of POS Systems” Available from: https://www.business.com/articles/types-of-pos-systems/

4. Caldeira, E. B., Gabriel & Pereira A. “Fraud Analysis and Prevention in e-Commerce Transactions.” Proc 9th Latin American Web Congress [Internet]. Available from: https://www.researchgate.net/publication/287299598_Fraud_Analysis_and_Prevention_in_e-Commerce_Transactions.

5. Herbst-Murphy S “Maintaining a safe environment for payment cards: Examining evolving threats posed by fraud.” 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Point of Sale Fraud Detection Methods via Machine Learning;2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3