EM_GA-RS: Expectation Maximization and GA-based Movie Recommender System

Author:

K N Asha,Rajkumar R

Abstract

This work introduced a novel approach for the movie recommender system using a machine learning approach. This work introduces a clustering-based approach to introduce a recommender system (RS). The conventional clustering approaches suffer from the clustering error issue, which leads to degraded performance. Hence, to overcome this issue, we developed an expectation- maximization-based clustering approach. However, due to imbalanced data, the performance of RS is degraded due to multicollinearity issues. Hence, we Incorporate PCA (Principal Component Analysis) based dimensionality reduction model to improve the performance. Finally, we aim to reduce the error; thus, a Genetic Algorithm (GA) is included to achieve the optimal clusters and assign the suitable recommendation. The experimental study is carried out on publically available movie datasets performance of the proposed approach is measured in terms of MSE (Mean Squared Error) and Root Mean Squared Error (RMSE). The comparative study shows that the proposed approach achieves better performance when compared with a state-of-art movie recommendation system.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3