Multi-target trajectory tracking in multi-frame video images of basketball sports based on deep learning
-
Published:2022-10-18
Issue:
Volume:
Page:e12
-
ISSN:2032-9407
-
Container-title:ICST Transactions on Scalable Information Systems
-
language:
-
Short-container-title:EAI Endorsed Scal Inf Syst
Author:
Gong Yong,Srivastava Gautam
Abstract
INTRODUCTION: There is occlusion interference in the multi-target visual tracking process of basketball video images, which leads to poor accuracy of multi-target trajectory tracking. This paper studies the multi-target trajectory tracking method in multi-frame video images of basketball sports based on deep learning.
OBJECTIVES: Aiming at the problem of target occlusion in the tracking process and the problem of trajectory tracking anomaly caused by target occlusion, a modified algorithm is proposed.
METHODS: The method is divided into two parts: detection and tracking. In the detection part, the YOLOv3 algorithm in deep learning technology is used to detect each target in the video, and the original YOLOv3 backbone network Darknet-53 is replaced by the lightweight backbone network MobileNetV2 to extract the target features.
RESULTS: Based on the target detection results, the Kalman filter is used to predict the next position and bounding box size of the target to obtain the target trajectory prediction results according to the current target position, then a hierarchical data association algorithm is designed, and multi-target tracking of the same category is completed based on the target appearance feature similarity and feature similarity.
CONCLUSION: The experimental results show that the method can accurately detect the targets in multi-frame video images in basketball sports and obtain high-precision target trajectory tracking results.
Publisher
European Alliance for Innovation n.o.
Subject
Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software
Reference22 articles.
1. Ammar, S. , Bouwmans, T. , Zaghden, N. , & Neji, M. (2020). Deep detector classifier (DeepDC) for moving objects segmentation and classification in video surveillance. IET Image Processing, 14(8), 1490-1501. 2. Liu, S., Wang, S., Liu, X., Lin, C. T., & Lv, Z. (2021) Fuzzy Detection aided Real-time and Robust Visual Tracking under Complex Environments. IEEE Transactions on Fuzzy Systems, 29(1), 90-102 3. Li, B. (2021). Auto-Extraction Simulation of Visual Saliency Image Region in Video Sequence. Computer Simulation,38(07), 447-450. 4. Yu, Y., Wang, H., Liu, S., Guo, L. & Li, Y. (2021). Distributed multi-agent target tracking: a nash-combined adaptive differential evolution method for uav systems. IEEE Transactions on Vehicular Technology, .2021, 70(8), 8122-8133. 5. Zhang, Y. , Wei, Y F. , Tao, J T. , & Li, J. (2021). Multiple Object Tracking and Motion Trajectory Prediction of Basketball Players. Chinese Journal of Sports Medicine, 40(10), 800-809.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|