A Technique for Cluster Head Selection in Wireless Sensor Networks Using African Vultures Optimization Algorithm

Author:

Kusla Vipan,Brar Gurbinder Singh

Abstract

INTRODUCTION: Wireless Sensor Network (WSN) has caught the interest of researchers due to the rising popularity of Internet of things(IOT) based smart products and services. In challenging environmental conditions, WSN employs a large number of nodes with limited battery power to sense and transmit data to the base station(BS). Direct data transmission to the BS uses a lot of energy in these circumstances. Selecting the CH in a clustered WSN is considered to be an NP-hard problem. OBJECTIVES: The objective of this work to provide an effective cluster head selection method that minimize the overall network energy consumption, improved throughput with the main goal of enhanced network lifetime. METHODS: In this work, a meta heuristic based cluster head selection technique is proposed that has shown an edge over the other state of the art techniques. Cluster compactness, intra-cluster distance, and residual energy are taken into account while choosing CH using multi-objective function. Once the CHs have been identified, data transfer from the CHs to the base station begins. The residual energy of the nodes is finally updated during the data transmission begins. RESULTS: An analysis of the results has been performed based on average energy consumption, total energy consumption, network lifetime and throughput using two different WSN scenarios. Also, a comparison of the performance has been made other techniques namely Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), Atom Search Optimization (ASO), Gorilla Troop Optimization (GTO), Harmony Search (HS), Wild Horse Optimization (WHO), Particle Swarm Optimization (PSO), Firefly Algorithm (FA) and Biogeography Based Optimization (BBO). The findings show that AVOA's first node dies at round 1391 in Scenario-1 and round 1342 in Scenario-2 which is due to lower energy consumption by the sensor nodes thus increasing lifespan of the WSN network. CONCLUSION: As per the findings, the proposed technique outperforms ABC, ACO, ASO, GTO, HS, WHO, PSO, FA, and BBO in terms of performance evaluation parameters and boosting the reliability of networks over the other state of art techniques.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3