Antisocial Behavior Identification from Twitter Feeds Using Traditional Machine Learning Algorithms and Deep Learning.

Author:

Singh Ravinder,Subramani Sudha,Du Jiahua,Zhang Yanchun,Wang Hua,Miao Yuan,Ahmed Khandakar

Abstract

Antisocial behavior (ASB) is one of the ten personality disorders included in ‘The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and falls in the same cluster as Borderline Personality Disorder, Histrionic Personality Disorder, and Narcissistic Personality Disorder. It is a prevalent pattern of disregard for and violation of the rights of others. Online antisocial behavior is a social problem and a public health threat. An act of ASB might be fun for a perpetrator; however, it can drive a victim into depression, self-confinement, low self-esteem, anxiety, anger, and suicidal ideation. Online platforms such as Twitter and Reddit can sometimes become breeding grounds for such behavior by allowing people suffering from ASB disorder to manifest their behavior online freely. In this paper, we propose a proactive approach based on natural language processing and deep learning that can enable online platforms to actively look for the signs of antisocial behavior and intervene before it gets out of control. By actively searching for such behavior, social media sites can prevent dire situations leading to someone committing suicide.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HpGraphNEI: A network entity identification model based on heterophilous graph learning;Information Processing & Management;2024-09

2. Cross-Sectional Analysis of Australian Dental Practitioners’ Perceptions of Teledentistry;ICST Transactions on Scalable Information Systems;2024-07-16

3. Federated Genetic Algorithm: Two-Layer Privacy-Preserving Trajectory Data Publishing;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. Multitask Sentiment Analysis and Topic Classification Using BERT;ICST Transactions on Scalable Information Systems;2024-07-11

5. A multi-source heterogeneous medical data enhancement framework based on lakehouse;Health Information Science and Systems;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3