Dynamic Weighted and Heat-map Integrated Scalable Information Path-planning Algorithm

Author:

Bi Shuhui,Li Zhihao,Brown Mackenzie,Wang Lei,Xu Yuan

Abstract

Smart storage is widely used for its efficient storage and applications. For making dynamic decisions when robots conflict and eliminating robot conflicts and improving efficiency from a global perspective, path-planning Algorithm will be analyzed and improved by integrating dynamic weighted and heat-map algorithm based on the scalable information of multi-robot in this paper. Firstly, a small storage grid model applicable to a variety of storage modes is established. Second, in order to solve the frontal collision problem of robots, an improved reservation table is established, which greatly reduces the storage space occupied by the reservation table while improving the operation efficiency; the A* algorithm is improved to achieve the purpose of avoiding vertex conflict and edge conflict at the same time; dynamic weighting table is added to solve the multi-robot driving strategy of intersection conflict and ensure that the most urgent goods are out of the warehouse firstly; the heat map algorithm is appended to reasonably allocate tasks, avoiding congested areas and realizing the dynamic assignment of tasks. Finally, the simulation was done by the proposed path planning method, the average transportation time was reduced by 14.97% comparing with the traditional path algorithm.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Reference17 articles.

1. S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of swarm intelligence,” Swarm Intelligence, vol. 1, no. 1, pp. 3–31, 2007.

2. J. Peng, “The robot path optimization of improved artificial fish-swarm algorithm,” Computer Modelling and New Technologies, vol. 18, no. 6, pp. 147–152, 2014.

3. Y. Tian, “Study of two firefly algorithms,” Scientist, vol. 4, no. 6, pp. 21–29, 2016.

4. A. Hidalgo-Paniagua, A. Vega-Rodrguez, M, and J. Fer-ruz, “Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach,” Soft Computing, vol. 21, no. 4, pp. 949–964, 2017.

5. S. Li, W. S, P. Guo, S. Zhang, and X. Pengfa, “Research on sar drone global path planning based on improved a* algorithm,” Chinese Medical Equipment Journal, vol. 41, no. 12, pp. 16–20, 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surveying the Landscape: Compound Methods for Aspect-Based Sentiment Analysis;Lecture Notes in Computer Science;2023-11-07

2. MIED : An Improved Graph Neural Network for Node Embedding in Heterogeneous Graphs;ICST Transactions on Scalable Information Systems;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3