Research on Improvement Calculation Method of Grid Power Losses Based on New Energy Access Model

Author:

Zhang Jun,QUE Huakun,Feng Xiashan,Feng Xiaofeng,Tang Xiling

Abstract

This research presents an improved calculation method for grid power losses, particularly focusing on the challenges posed by new energy access models. With the integration of electric vehicles and the rise of data centers, the demand for electrical energy has surged, leading to increased strain on grid stations and subsequent power losses. The proposed model aimed at reducing these power losses, while also examining existing systems to mitigate and analyze such issues. A significant contribution of this work is the application of the Random Forest machine learning algorithm, which enables efficient and accurate power flow calculations essential for optimizing grid performance. The proposed method is expected to enhance the grid’s ability to handle future energy demands and contribute to the sustainable development of electrical energy systems.

Publisher

European Alliance for Innovation n.o.

Reference13 articles.

1. Stevanovic, Dejan & Petkovic, Predrag. (2013). The Losses at Power Grid Caused by Small Nonlinear Loads. SERBIAN JOURNAL OF ELECTRICAL ENGINEERING. 10. 209-2017. 10.2298/SJEE1301209S.

2. **Z. Wei**: Compact Fluorescent Lamps Phase Dependency Modelling and Harmonic Assessment of Their Widespread Use in Distribution Systems, Master Theses, University of Canterbury, Christchurch, New Zealand, Sept. 2009.

3. Gerald T. Heydt Department of Electrical Engineering, Arizona State University, Tempe, Arizona, USA

4. Li, Yuying & Ma, Xiping & Liang, Chen & Li, Yaxin & Cai, Zhou & Jiang, Tong. (2022). Continuous Line Loss Calculation Method for Distribution Network Considering Collected Data of Different Densities. Energies. 15. 5171. 10.3390/en15145171.

5. Yang, L.X.; Liu, H.; Zhang, H.Y.; Lou, B. Improved shape coefficient method for low voltage grid line loss calculation. Power Demand Side Manag. 2009, 11, 29–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3