Optimization of Deep Generative Intrusion Detection System for Cloud Computing: Challenges and Scope for Improvements

Author:

Wankhade Nitin,Khandare Anand

Abstract

The large amount of data and its exponential increase result in security problems which subsequently cause damage to cloud computing and its environments. The Intrusion detection system (IDS) is among the systems that monitor and analyse data for malicious attacks in the cloud environment. High volume, high redundancy, and high dimensionality of network traffic in cloud computing make it difficult to detect attacks by contemporary techniques. To improve the performance of IDS features selection and data imbalance issues need to be resolved. This paper includes techniques and surveys of cloud-based IDS with ML techniques and IDS performance on the different types of cloud-based datasets. It also analyses the gaps and scope for enhancement of evaluation parameters of IDS. It provides a cloud-based IDS system which will produce a good performance result as compared to the other contemporary system. Moreover, this paper offers a current overview of cloud-based IDS, Data imbalance technique, Dataset and proposed cloud IDS system architecture.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3