EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

Author:

Kumar M. Santhosh,Kumar Ganesh Reddy

Abstract

The scheduling of tasks in the cloud is a major challenge for improving resource availability and decreasing the total execution time and energy consumption of operations. Due to its simplicity, efficiency, and effectiveness in identifying global optimums, electric fish optimisation (EFO) has recently garnered a lot of interest as a metaheuristic method for solving optimisation issues. In this study, we apply electric fish optimisation (EAEFA) to the problem of cloud task scheduling in an effort to cut down on power usage and turnaround time. The objective is to finish all tasks in the shortest possible time, or makespan, taking into account constraints like resource availability and task dependencies. In the EAEFA approach, a school of electric fish is used to solve a multi-objective optimization problem that represents the scheduling of tasks. Because electric fish are drawn to high-quality solutions and repelled by low-quality ones, the algorithm is able to converge to a global optimum. Experiments validate EAEFA's ability to solve the task scheduling issue in cloud computing. The suggested scheduling strategy was tested on HPC2N and other large-scale simulations of real-world workloads to measure its makespan time, energy efficiency and other performance metrics. Experimental results demonstrate that the proposed EAEFA method improves performance by more than 30% with respect to makespan time and more than 20% with respect to overall energy consumption compared to state-of-the-art methods.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GEWO: An Efficient Prioritised Task Scheduling in Cloud Fog Computing Environment;2024 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET);2024-03-21

2. HGCSO: Energy Efficient Multi-objective Task Scheduling in Cloud-Fog Environment;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Systematic Literature Review on Bio Inspired Algorithms in Cloud Fog Computing;2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC);2023-12-14

4. A Systematic Review on Various Task Scheduling Algorithms in Cloud Computing;EAI Endorsed Transactions on Internet of Things;2023-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3