Abstract
In this paper we investigated about the potential problems occurring worldwide, regarding social networks with misleading advertisements where some authors applied some artificial intelligence techniques such as: Neural networks as mentioned by Guo, Z., et. al, (2021), sentiment analysis, Paschen (2020), Machine learning, Burkov (2019) cited in Kaufman (2020) and, to combat fake news in front of such publications by social networks in this study were able to identify if these techniques allow to solve the fear that people feel of being victims of misleading news or fake videos without checking concerning covid-19. In conclusion, it was possible to detail in this paper that the techniques applied with artificial intelligence used did not manage to identify misleading news in a deep way. These techniques used are not real-time applications, since each artificial intelligence technique is separately, extracting data from the information of social networks, generating diagnoses without real-time alerts.
Publisher
European Alliance for Innovation n.o.
Subject
Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software
Reference112 articles.
1. Pérez, Villegas, Cabascango, Soria. (2023). Inteligencia artificial como estrategia de innovación en empresas de servicios: una revisión bibliográfica. Revista Publicando, 74-82. https://doi.org/https://doi.org/10.51528/rp.vol10.id2359
2. Ben, Balloukb, Ben, Sahut. (2023). Artificial intelligence applications in fake review detection: Bibliometric analysis and future avenues for research. Journal of Business Research, 113631. https://www.sciencedirect.com/science/article/abs/pii/S0148296322010967
3. Kaushik, Ahmad, Sanger, Mishra. (2023). Fake News Detection Using Blockchain. EasyChair Preprint, 10-18. https://easychair.org/publications/preprint/kbTX
4. Brzic, Boticki, Babac. (2023). Detección del engaño mediante el procesamiento del lenguaje natural y el aprendizaje automático en conjuntos de datos sobre la COVID-19 y el cambio climático. Algoritmos, 1-34. https://www.mdpi.com/1999-4893/16/5/221
5. Azahrani, Alijabri. (2022). Técnicas basadas en IA para la detección de fraude de clics en anuncios y sensores y redes de actuadores. https://doi.org/https://doi.org/https://www.mdpi.com/2224-2708/12/1/4#sec4-jsan-12-00004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysing the Role of Human-AI Collaboration in Workforce Transformation;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18