An Energy Efficient Particle Swarm Optimization based VM Allocation for Cloud Data Centre: EEVMPSO

Author:

Pandey Abhishek Kumar,Singh Sarvpal

Abstract

Virtual Machine (VM) allocation are the crucial problems because cloud computing enables the rapid growth of data centres and compute centres. Power consumption and network expenses have increased as cloud computing becomes more and more prevalent. System instability may result from repeated requests for computing resources. One of the most important and difficulties facing virtualization technology is finding the best way to stack virtual machines on top of physical machines in cloud data centres. The host must move virtual machines from overloaded to underloaded hosts as part of load balancing, which has an impact on energy consumption. The proposed energy efficient particle swarm optimization algorithm (EEVMPSO) for Virtual Machine allocation to maximize the load balancing. System resources including CPU, storage, and memory are optimized using EEVMPSO. This research article suggests energy-aware virtual machine migration using the Particle Swarm Optimization Algorithm for dynamic VMs placement, energy efficient cloud data centres as a solution to this issue. The experimental result shown in the proposed method, consumption energy in comparison to the PAPSO, KHA, EALBPSO, and RACC-MDT algorithm by 10.86%, 18.22%, 25.8%, and 31.34% respectively, it demonstrated the improvements in the energy service level agreements violation 5.77%, 15.3%, 26.19%, and 30.4%, as well as the average CPU utilization 2.2%, 24%, 22.6%, and 14.6%. 

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3