Technology for Power Outage Research and Judgment-dependent Data Feature Noise Analysis

Author:

Li Xiang

Abstract

INTRODUCTION: Power grid blackouts occur frequently, which significantly impacts social impact. Because these accidents are dynamic and random, predicting and evaluating them is challenging. OBJECTIVES: To explore the complexity of the power grid itself, analyzes the critical changes of the self-organizing model during power grid fault, extracts the data characteristics related to the steady-state maintenance of abnormal systems, and puts forward an effective outage prediction model. METHODS: Starting with cluster analysis, The authors can reduce data fluctuation and eliminate noise interference to optimize data. The evaluation indexes of initial fault occurrence possibility and fault propagation speed in the power grid are constructed. RESULTS: The validation of the outage forecasting model has produced promising results, achieving 96.4% forecasting accuracy and a meager error rate. In addition, the evaluation index developed in this study accurately reflects the possibility and spread speed of power outage accidents. CONCLUSION: The research proves the feasibility of establishing an outage prediction model based on the power grid system data characteristics. The model has high accuracy and reliability and is a valuable tool for power outage research and judgment.

Publisher

European Alliance for Innovation n.o.

Subject

Marketing,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference21 articles.

1. Fan, M., Yang, Q., Guo, X.F., Liu, H., Xia J.L., Peng Y.W.. (2023). Prediction method of power outage in a distribution network for unbalanced data, Power System Protection and Control, 51(8): 96-106

2. Li, G.Q., Liu, D.G., Xiao, G.L., Zhang, B., Wang, G.W., Ren, H., Zhen, Z.. (2022).Risk Prediction of Node Outage in High Proportion New Energy Grid, Power System and Clean Energy, 38(10), 106-115.

3. Nan, D.L., Feng, C.Y., Cao, H., Wang, X., Li, Y.D.. (2021). Data-driven predictive model of distribution system blackout, Advanced Technology of Electrical Engineering and Energy, 40(12), 56-63.

4. Yu, Q., Qu, Y.Q., Shi, L.. (2018). Self-correlation Analysis of Power Grid Blackouts Based on Relative Value Method and Hurst Exponent." Automation of Electric Power Systems, 42(01), 55-60,124.

5. Hassani, H., Razavi-Far, R., & Saif, M.. (2022). Real-time out-of-step prediction control to prevent emerging blackouts in power systems: A reinforcement learning approach.Applied Energy,314, 118861.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3