Robust Control System for DFIG-Based WECS and Energy Storage in reel Wind Conditions

Author:

Hamid Chojaa,Aziz Derouich,Zamzoum Othmane,El Idrissi Abderrahman

Abstract

This research work focuses on addressing the challenges of controlling a wind energy conversion system (WECS) connected to the grid, particularly when faced with variable wind speed profiles. The system consists of a Doubly-Fed Induction Generator (DFIG) connected to the grid through an AC/DC/AC converter, along with a Li-ion battery storage system connected to the Back-to-Back converter DC link via a DC/DC converter. The non-linearity and internal parametric variation of the wind turbine can negatively impact energy production, battery charging performance, and battery lifespan. To overcome these issues, the study proposes a robust control approach called Integral action Sliding Mode Control (ISMC) to enhance the dynamic performance of the WECS based on DFIG. Additionally, the battery charging and discharging controllers play a crucial role in efficiently distributing power to the grid and storage unit based on the battery's state of charge, extracted energy, and power injected into the grid. Two current regulation modes, buck charging and boost discharging, are employed to ensure proper energy distribution. Furthermore, a storage system energy management algorithm is implemented to ensure battery safety during one of the charging modes. The effectiveness and robustness of the proposed control method were validated through simulations of a 1.5 MW wind power conversion system using Matlab/Simulink. The results confirmed the method's efficiency and efficacy.

Publisher

European Alliance for Innovation n.o.

Subject

Marketing,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. H. Chojaa et al., "Robust Control of DFIG-Based WECS Integrating an Energy Storage System With Intelligent MPPT Under a Real Wind Profile," in IEEE Access, vol. 11, pp. 90065-90083, 2023, doi: 10.1109/ACCESS.2023.3306722.

2. Loulijat, A.; Chojaa, H.; El Marghichi, M.; Ettalabi, N.; Hilali, A.; Barnawi, A.B.; Elbarbary, Z.M.S.; Mossa, M.A. Application and Comparison of a Modified Protection Scheme Utilizing a Proportional–Integral Controller with a Conventional Design to Enhance Doubly Fed Induction Generator Wind Farm Operations during a Balanced Voltage Dip. Processes 2023, 11, 2834. https://doi.org/10.3390/pr11102834.

3. Hadoune A, Mouradi A, Mimet A, Chojaa H, Dardabi C, Gulzar MM, Alqahtani M and Khalid M (2023) Optimizing direct power control of DFIG-based WECS using super-twisting algorithm under real wind profile. Front. Energy Res. 11:1261902. doi: 10.3389/fenrg.2023.1261902

4. Chojaa, H. et al. (2022). Comparative Study of MPPT Controllers for a Wind Energy Conversion System. In: Saidi, R., El Bhiri, B., Maleh, Y., Mosallam, A., Essaaidi, M. (eds) Advanced Technologies for Humanity. ICATH 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-94188-8_28.

5. Elmostafa Chetouani, Youssef Errami, Abdellatif Obbadi, Smail Sahnoun, Self-adapting PI controller for grid-connected DFIG wind turbines based on recurrent neural network optimization control under unbalanced grid faults, Electric Power Systems Research, Volume 214, Part A, 2023, 108829, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2022.108829.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3