A Novel Approach for Earthquake Prediction Using Random Forest and Neural Networks

Author:

Agarwal Nidhi,Arora Ishika,Saini Harsh,Sharma Ujjwal

Abstract

INTRODUCTION: This research paper presents an innovative method that merges neural networks and random forest   algorithms to enhance earthquake prediction. OBJECTIVES: The primary objective of the study is to improve the precision of earthquake prediction by developing a hybrid model that integrates seismic wave data and various extracted features as inputs. METHODS: By training a neural network to learn the intricate relationships between the input features and earthquake magnitudes and employing a random forest algorithm to enhance the model's generalization and robustness, the researchers aim to achieve more accurate predictions. To evaluate the effectiveness of the proposed approach, an extensive dataset of earthquake records from diverse regions worldwide was employed. RESULTS: The results revealed that the hybrid model surpassed individual models, demonstrating superior prediction accuracy. This advancement holds profound implications for earthquake monitoring and disaster management, as the prompt and accurate detection of earthquake magnitudes is vital for effective mitigation and response strategies. CONCLUSION: The significance of this detection technique extends beyond theoretical research, as it can directly benefit organizations like the National Disaster Response Force (NDRF) in their relief efforts. By accurately predicting earthquake magnitudes, the model can facilitate the efficient allocation of resources and the timely delivery of relief materials to areas affected by natural disasters. Ultimately, this research contributes to the growing field of earthquake prediction and reinforces the critical role of data-driven approaches in enhancing our understanding of seismic events, bolstering disaster preparedness, and safeguarding vulnerable communities.

Publisher

European Alliance for Innovation n.o.

Subject

Marketing,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3