Exploring the Potential of Deep Learning in the Classification and Early Detection of Parkinson's Disease

Author:

Bakkialakshmi V S,Arulalan V,Chinnaraju Gowdham,Ghosh Hritwik,Rahat Irfan Sadiq,Saha Ankit

Abstract

INTRODUCTION: Parkinson's Disease (PD) is a progressive neurological disorder affecting a significant portion of the global population, leading to profound impacts on daily life and imposing substantial burdens on healthcare systems. Early identification and precise classification are crucial for effectively managing this disease. This research investigates the potential of deep learning techniques in facilitating early recognition and accurate classification of PD. OBJECTIVES: The primary objective of this study is to leverage advanced deep learning techniques for the early detection and precise classification of Parkinson's Disease. By utilizing a rich dataset comprising speech signal features extracted from 3000 PD patients, including Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, Vocal Fold Features, and TWQT features, this research aims to evaluate the performance of various deep learning models in PD classification. METHODS: The dataset containing diverse speech signal features from PD patients' recordings serves as the foundation for training and evaluating five different deep learning models: ResNet50, VGG16, Inception v2, AlexNet, and VGG19. Each model undergoes training and assessment to determine its capability in accurately classifying PD patients. Performance metrics such as accuracy are employed to evaluate the models' effectiveness. RESULTS: The results demonstrate promising potential, with overall accuracies ranging from 89% to 95% across the different deep learning models. Notably, AlexNet emerges as the top-performing model, achieving an accuracy of 95% and demonstrating balanced performance in accurately identifying both true and false PD cases. CONCLUSION: This research highlights the significant potential of deep learning in facilitating the early detection and classification of Parkinson's Disease. Leveraging speech signal features offers a non-invasive and cost-effective approach to PD assessment. The findings contribute to the growing body of evidence supporting the integration of artificial intelligence in healthcare, particularly in the realm of neurodegenerative disorders. Further exploration into the application of deep learning in this domain holds promise for advancing PD diagnosis and management.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3