Convolutional Neural Networks in Malaria Diagnosis: A Study on Cell Image Classification

Author:

Ghosh Hritwik,Rahat Irfan Sadiq,Ravindra J V R,J Balajee,Ullah Khan Mohammad Aman,Somasekar J

Abstract

INTRODUCTION: Malaria, a persistent global health threat caused by Plasmodium parasites, necessitates rapid and accurate identification for effective treatment and containment. This study investigates the utilization of convolutional neural networks (CNNs) to enhance the precision and speed of malaria detection through the classification of cell images infected with malaria. OBJECTIVES: The primary objective of this research is to explore the effectiveness of CNNs in accurately classifying malaria-infected cell images. By employing various deep learning models, including ResNet50, AlexNet, Inception V3, VGG19, VGG16, and MobileNetV2, the study aims to assess the performance of each model and identify their strengths and weaknesses in malaria diagnosis. METHODS: A balanced dataset comprising approximately 8,000 enhanced images of blood cells, evenly distributed between infected and uninfected classes, was utilized for model training and evaluation. Performance evaluation metrics such as precision, recall, F1-score, and accuracy were employed to assess the efficacy of each CNN model in malaria classification. RESULTS: The results demonstrate high accuracy across all models, with AlexNet and VGG19 exhibiting the highest levels of accuracy. However, the selection of a model should consider specific application requirements and constraints, as each model presents unique trade-offs between computational efficiency and performance. CONCLUSION: This study contributes to the burgeoning field of deep learning in healthcare, particularly in utilizing medical imaging for disease diagnosis. The findings underscore the considerable potential of CNNs in enhancing malaria diagnosis. Future research directions may involve further model optimization, exploration of larger and more diverse datasets, and the integration of CNNs into practical diagnostic tools for real-world deployment.

Publisher

European Alliance for Innovation n.o.

Reference19 articles.

1. Jünger, S. T., Hoyer, U. C. I., Schaufler, D., Laukamp, K. R., Goertz, L., Thiele, F., Grunz, J., Schlamann, M., Perkuhn, M., Kabbasch, C., Persigehl, T., Grau, S., Borggrefe, J., Scheffler, M., Shahzad, R., & Pennig, L. (2021). Fully Automated MR Detection and Segmentation of Brain Metastases in Non‐small Cell Lung Cancer Using Deep Learning. Journal of Magnetic Resonance Imaging, 54(5), 1608–1622. https://doi.org/10.1002/jmri.27741

2. Masud, M., Sikder, N., Nahid, A.-A., Bairagi, A. K., & AlZain, M. A. (2021). A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework. Sensors (Basel, Switzerland), 21(3), 748. https://doi.org/10.3390/s21030748

3. Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, D., Moreira, A. L., Razavian, N., & Tsirigos, A. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559–1567. https://doi.org/10.1038/s41591-018-0177-5

4. Chen, J., Zeng, H., Zhang, C., Shi, Z., Dekker, A., Wee, L., & Bermejo, I. (2022). Lung cancer diagnosis using deep attention-based multiple instance learning and radiomics. Medical Physics (Lancaster), 49(5), 3134–3143. https://doi.org/10.1002/mp.15539

5. Yeh, M. C.-H., Wang, Y.-H., Yang, H.-C., Bai, K.-J., Wang, H.-H., & Li, Y.-C. (2021). Artificial Intelligence-Based Prediction of Lung Cancer Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach. Journal of Medical Internet Research, 23(8), e26256–e26256. https://doi.org/10.2196/26256

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3