Exploring Deep Learning Models for Accurate Alzheimer's Disease Classification based on MRI Imaging

Author:

Ghosh Hritwik,P Pavan Kumar,Rahat Irfan Sadiq,Hasan Nipu MD Mehedi,Rama Krishna Garigipati,Ravindra J V R

Abstract

INTRODUCTION: Alzheimer's disease (AD), a complex neurodegenerative condition, presents significant challenges in early and accurate diagnosis. Early prediction of AD severity holds the potential for improved patient care and timely interventions. This research investigates the use of deep learning methodologies to forecast AD severity utilizing data extracted from Magnetic Resonance Imaging (MRI) scans. OBJECTIVES: This study aims to explore the efficacy of deep learning models in predicting the severity of Alzheimer's disease using MRI data. Traditional diagnostic methods for AD, primarily reliant on cognitive assessments, often lead to late-stage detection. MRI scans offer a non-invasive means to examine brain structure and detect pathological changes associated with AD. However, manual interpretation of these scans is labor-intensive and subject to variability. METHODS: Various deep learning models, including Convolutional Neural Networks (CNNs) and advanced architectures like DenseNet, VGG16, ResNet50, MobileNet, AlexNet, and Xception, are explored for MRI scan analysis. The performance of these models in predicting AD severity is assessed and compared. Deep learning models autonomously learn hierarchical features from the data, potentially recognizing intricate patterns associated with different AD stages that may be overlooked in manual analysis. RESULTS: The study evaluates the performance of different deep learning models in predicting AD severity using MRI scans. The results highlight the efficacy of these models in capturing subtle patterns indicative of AD progression. Moreover, the comparison underscores the strengths and limitations of each model, aiding in the selection of appropriate methodologies for AD prognosis. CONCLUSION: This research contributes to the growing field of AI-driven healthcare by showcasing the potential of deep learning in revolutionizing AD diagnosis and prognosis. The findings emphasize the importance of leveraging advanced technologies, such as deep learning, to enhance the accuracy and timeliness of AD diagnosis. However, challenges remain, including the need for large annotated datasets, model interpretability, and integration into clinical workflows. Continued efforts in this area hold promise for improving the management of AD and ultimately enhancing patient outcomes.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3