Abstract
The use of cutting-edge technology has resulted in a significant enhancement in athletic training. Computer vision and motion tracking are very important for enhancing performance, reducing the risk of accidents, and training in general. Some computer vision algorithms investigate how a sportsperson moves when competing or practising. It is possible that coaches who continuously evaluate their players’ posture, muscle activation, and joint angles would have a better understanding of biomechanical efficiency. It is possible to generate performance measurements from the real-time surveillance of athletes while competing in sports. Through the use of computer vision, it is possible to identify acts that might be hazardous. Notifications are given to coaches if there is a deviation in the form of an athlete, which enables them to address the situation as soon as possible. The three variables that these sensors monitor are the direction, speed, and acceleration. Athletes can encounter realistic environments thanks to the integration of motion tracking with virtual reality. One may use the feedback loop to increase their spatial awareness and decision-making ability. Augmented reality allows for enhancing an athlete’s eyesight by providing them with real-time data while practising. Last but not least, the use of computer vision and motion tracking is bringing about a significant improvement in the sporting training process. Through collaborative efforts, researchers, athletes, and coaches can accelerate humans' performance to levels that have never been seen before.
Publisher
European Alliance for Innovation n.o.
Reference25 articles.
1. Orunbayev, A. (2023). Globalisation and Sports Industry. American Journal Of Social Sciences And Humanity Research, 3(11), 164-182.
2. Host, K., & Ivašić-Kos, M. (2022). An overview of Human Action Recognition in sports based on Computer Vision. Heliyon, 8(6).
3. Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). Recent advances in image processing techniques for automated leaf pest and disease recognition–A review. Information processing in agriculture, 8(1), 27-51.
4. Zhang, Z., Wen, F., Sun, Z., Guo, X., He, T., & Lee, C. (2022). Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Advanced Intelligent Systems, 4(7), 2100228.
5. Ding, Y., Li, Y., & Cheng, L. (2020). Application of Internet of Things and virtual reality technology in college physical education. Ieee Access, 8, 96065-96074.