Modelling of Diabetic Cases for Effective Prevalence Classification

Author:

Shah Shrey,Mangla Monika,Sharma Nonita,Choudhury Tanupriya,Syamala Maganti

Abstract

INTRODUCTION: This study compares and contrasts various machine learning algorithms for predicting diabetes. The study of current research work is to analyse the effectiveness of various machine learning algorithms for diabetes prediction. OBJECTIVES: To compare the efficacy of various machine learning algorithms for diabetic prediction. METHODS: For the same, a diabetic dataset was subjected to the application of various well-known machine learning algorithms. Unbalanced data was handled by pre-processing the dataset. The models were subsequently trained and assessed using different performance metrics namely F1-score, accuracy, sensitivity, and specificity. RESULTS: The experimental results show that the Decision Tree and ensemble model outperforms all other comparative models in terms of accuracy and other evaluation metrics. CONCLUSION: This study can help healthcare practitioners and researchers to choose the best machine learning model for diabetes prediction based on their specific needs and available data.

Publisher

European Alliance for Innovation n.o.

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3