Depressonify: BERT a deep learning approach of detection of depression

Author:

Kumari Meena,Singh Gurpreet,Pande Sagar Dhanraj

Abstract

INTRODUCTION: Depression is one of the leading psychological problems in the modern tech era where every single person has a social media account that has wide space for the creation of depressed feelings. Since depression can escalate to the point of suicidal thoughts or behavior spotting it early can be vitally important. Traditionally, psychologists rely on patient interviews and questionnaires to gauge the severity of depression. OBJECTIVES: The objective of this paper is earlier depression detection as well as treatment can greatly improve the probability of living a healthy and full life free of depression. METHODS: This paper introduces the utilization of BERT, a novel deep-learning, transformers approach that can detect levels of depression using textual data as input. RESULTS: The main result obtained in this paper is the extensive dataset consists of a total of 20,000 samples, which are categorized into 5 classes and further divided into training, testing, and validation sets, with respective sizes of 16,000, 2,000, and 2,000. This paper has achieved a remarkable result with a training accuracy of 95.5% and validation accuracy of 92.2% with just 5 epochs. CONCLUSION: These are the conclusions of this paper, Deep learning has a lot of potential for use in mental health applications, as seen by the study's outstanding results, which included training accuracy of 95.5%. But the path towards comprehensive and morally sound AI-based mental health support continues into the future.

Publisher

European Alliance for Innovation n.o.

Reference14 articles.

1. I. Tavchioski, M. Robnik-Šikonja, and S. Pollak, Detection of depression on social networks using transformers and ensembles. 2023. Accessed: Sep. 15, 2023. [Online]. Available: https://arxiv.org/abs/2305.05325).

2. A.-M. Bucur, A. Cosma, P. Rosso, and L. P. Dinu, “It’s Just a Matter of Time: Detecting Depression with Time-Enriched Multimodal Transformers,” arXiv.org, Feb. 06, 2023. https://arxiv.org/abs/2301.05453.

3. S. S. Viloria, D. P. del Río, R. B. Cabo, G. A. A. Fuentes, and I. Segura-Bedmar, “A Frame- work for Identifying Depression on Social Media: MentalRiskES@IberLEF 2023,” arXiv.org, Jun. 29, 2023. https://arxiv.org/abs/2306.16125.

4. S. Burris, E. Villatoro-Tello, S. Madikeri, and P. Motlicek, “Node-weighted Graph Convo- lutional Network for Depression Detection in Transcribed Clinical Interviews,” arXiv.org, Jul. 03, 2023. https://arxiv.org/abs/2307.00920.

5. Y. H. Shen, H. Yang, and L. Lin, “Automatic Depression Detection: An Emotional Audio- Textual Corpus and a GRU/BiLSTM-based Model,” arXiv (Cornell University), Feb. 2022, doi: https://doi.org/10.48550/arxiv.2202.08210.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3