A predictive prototype for the identification of diseases relied on the symptoms described by patients

Author:

Nayak Suvendu Kumar,Garanayak Mamata,Swain Sangram Keshari

Abstract

INTRODUCTION: A thorough and timely investigation of any health-related problem is essential for disease prevention and treatment. The normal way of diagnosis may not be sufficient in the event of a serious illness problem. OBJECTIVE: Creating a medical diagnosis prototype that uses many machine learning processes to forecast any illness relied on symptoms explained by patients can lead to an errorless diagnosis as compared to the traditional ways. METHODS: We created a disease prediction prototype using ML techniques such as random forest, CART, multinomial linear regression, and KNN. The data set utilized for processing contained over 132 illnesses. Diagnosis algorithm outcomes the ailment that the person may be suffering from relied on the symptoms provided by the patients. RESULTS: When compared to CART and random forest (accuracy is 97.72%, multinomial linear regression and KNN produced the best outcomes. The accuracy of the KNN prediction and multinomial linear regression techniques was 98.76%. CONCLUSION: The diagnostic prototype can function as a doctor in the early detection of an illness, ensuring that medical care can begin in an appropriate time and many lives can be secured.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3