Automatic Data-Driven Classification Systems for Cardiovascular Disease

Author:

Jayaraman Muralidharan,Pichai Shanmugavadivu

Abstract

Cardiovascular disease (CVD) continues to contribute significantly to preventable deaths and avoidable disability worldwide. Prediction and prevention are of utmost importance in the support of public health. Machine learning and deep learning algorithms have emerged as powerful tools to improve the accuracy of diagnosis, prognosis, and treatment of cardiovascular disease. By employing these technologies, medical professionals can gain valuable insights into the risk factors associated with CVD. The focus of this research is to classify and predict cardiovascular diseases using techniques such as support vector machines, ensemble methods, decision trees, random forests, and neural networks. The effectiveness of these algorithms is evaluated based on metrics including accuracy, sensitivity, specificity, area under the curve (AUC), and F1 score. Results show that support vector machines and ensemble methods offer superior accuracy, while neural networks exhibit higher sensitivity and specificity in predicting cardiovascular diseases.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3