Pre-processing the Photoplethysmography Signals for Enhancing the Cardiovascular Diseases Detection for Wrist Pulse Analysis in Nadi Ayurveda

Author:

Tandon Aditya,Kumar Vivek,Choudhury Tanupriya

Abstract

INTRODUCTION: In recent years, Photoplethysmography (PPG) signal has played a vital role in detecting Cardiovascular Diseases (CVDs) in case of wrist pulse analysis emulating the Nadi Ayurveda. The PPG signals acquired from the sensor measurement are severely distorted by various artifacts, which significantly impact the accuracy of disease detection and hamper the disease diagnosis process. OBJECTIVES: Removing the noises is essential before detecting CVDs from the signals and thus, developing a simple and effective noise reduction method for enhancing the PPG signal quality constitutes a challenging research problem, particularly with prominent artifacts. METHODS: This paper designs an effective pre-processing technique that improves denoising methods to enhance the PPG signal quality. The design of pre-processing technique contains two major phases: Primary denoising-based artifact removal and secondary denoising-based Premature Ventricular Contraction (PVC) detection and Power-Line Interference (PLI) noise removal. The primary denoising method involves coarse and fine-grained filtering. The coarse-grained filtering removes the major artifacts, such as Baseline Wander (BLW) and Motion Artifacts (MA), by developing the Two-Stage Adaptive Noise Canceller (TANC) method. The fine-grained filtering process utilizes a detrended filter to filter the refined signal obtained from the TANC method. For the signals filtered from the primary denoising method, the secondary denoising method targets to detect the PVC-induced PPG signals from the decomposed high-frequency signals and removes high-frequency noise, such as PLI from noisy signals, by adopting the Wavelet Transform (WT) method. RESULTS: During the signal reconstruction process in the WT method, the research work reconstructs the denoised PPG signals along with the PVC-induced PPG signals. The experimental results of the noise removal methodology illustrated significant improvements in PPG signal quality. CONCLUSION: The designed pre-processing technique effectively denoises PPG signals, leading to enhanced signal quality which can further aid in accurate disease detection.

Publisher

European Alliance for Innovation n.o.

Reference24 articles.

1. Jagannathan, R., Patel, S.A., Ali, M.K. and Narayan, K.M., 2019. Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Current diabetes reports, 19(7), pp.1-12.

2. Cardiovascular Disease 2021, Accessed on 16 September 2022, https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

3. Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., Barengo, N.C., Beaton, A.Z., Benjamin, E.J., Benziger, C.P. and Bonny, A., 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), pp.2982-3021.

4. Li, K., Zhang, S., Yang, L., Luo, Z. and Gu, G., 2014. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Bio-medical materials and engineering, 24(6), pp.2657-2664.

5. Mishra, B. and Nirala, N.S., 2020, November. A Survey on Denoising Techniques of PPG Signal. In 2020 IEEE International Conference for Innovation in Technology (INOCON) (pp. 1-8). IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3