The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas

Author:

Dikshit Srishti,Atiq Areeba,Shahid Mohammad,Dwivedi Vinay,Thusu Aarushi

Abstract

The swift urbanization of cities has given rise to an unparalleled surge in vehicular traffic, leading to substantial congestion, heightened pollution, and a diminished quality of life. This investigation explores the capacity of artificial intelligence (AI) to transform urban mobility by optimizing vehicle routing and alleviating traffic congestion. The objective is to create AI-powered solutions that augment transportation efficiency, diminish travel times, and mitigate environmental repercussions. This paper thoroughly scrutinizes existing AI algorithms, vehicle routing, and traffic management techniques. The study integrates real-time traffic data, road network characteristics, and individual travel patterns to formulate intelligent routing strategies. The proposed AI system adjusts to dynamic traffic conditions through machine learning and optimization algorithms, pinpointing optimal routes and redistributing traffic flows to minimize congestion hotspots. To assess the effectiveness of the AI-driven approach, extensive simulations and case studies are conducted in representative urban areas. Performance metrics, including travel time reduction, fuel consumption, and emissions reduction, are employed to quantify the impact of the proposed system on traffic congestion and environmental sustainability. Furthermore, the study evaluates the scalability, feasibility, and economic viability of implementing AI-based traffic management solutions on a larger scale. The outcomes of this research provide valuable insights into the potential advantages of AI in reshaping urban mobility. By optimizing vehicle routing and diminishing traffic congestion, the proposed AI-driven system has the potential to elevate overall transportation efficiency, reduce energy consumption, and contribute to a healthier urban environment. The findings carry substantial implications for policymakers, urban planners, and transportation authorities seeking innovative solutions to tackle the challenges of contemporary urbanization while promoting sustainable development.

Publisher

European Alliance for Innovation n.o.

Subject

Marketing,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3