Revolutionizing Cloud Resource Allocation: Harnessing Layer-Optimized Long Short-Term Memory for Energy-Efficient Predictive Resource Management

Author:

Sireesha Prathigadapa,S Vishnu Priyan,Govindarajan M,Rajan Sounder,Rajakumareswaran V

Abstract

INTRODUCTION: This is the introductory text. Accurate data center resource projection will be challenging due to the dynamic and constantly changing workloads of multi-tenant co-hosted applications. Resource Management in the Cloud (RMC) becomes a significant research component. In the cloud's easy service option, users can choose to pay a fixed sum or based on the amount of time. OBJECTIVES: The main goal of this study is systematic method for estimating future cloud resource requirements based on historical consumption. Resource distribution to users, who require a variety of resources, is one of cloud computing main objective in this study. METHODS: This article suggests a Layer optimized based Long Short-Term Memory (LOLSTM) to estimate the resource requirements for upcoming time slots. This model also detects SLA violations when the QoS value exceeds the dynamic threshold value, and it then proposes the proper countermeasures based on the risk involved with the violation. RESULTS: Results indicate that in terms of training and validation the accuracy is 97.6%, 95.9% respectively, RMSE and MAD shows error rate 0.127 and 0.107, The proposed method has a minimal training and validation loss at epoch 100 are 0.6092 and 0.5828, respectively. So, the suggested technique performed better than the current techniques. CONCLUSION: In this work, the resource requirements for future time slots are predicted using LOLSTM technique. It regularizes the weights of the network and avoids overfitting. In addition, the proposed work also takes necessary actions if the SLA violation is recognized by the model. Overall, the proposed work in this study shows better performance compared to the existing methods.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3