Provision for Energy: A Resource Allocation Problem in Federated Learning for Edge Systems

Author:

Liu Mingyue,Rajamanickam Leelavathi,Parthasarathy Rajamohan

Abstract

The article explores an energy-efficient method for allocating transmission and computation resources for federated learning (FL) on wireless communication networks.  The model being considered involves each user training a local FL model using their limited local computing resources and the data they have collected.   These local models are then transmitted to a base station, where they are aggregated and broadcast back to all users.  The level of accuracy in learning, as well as computation and communication latency, are determined by the exchange of models between users and the base station.  Throughout the FL process, energy consumption for both local computation and transmission must be taken into account.   Given the limited energy resources of wireless users, the communication problem is formulated as an optimization problem with the goal of minimizing overall system energy consumption while meeting a latency requirement. To address this problem, we propose an iterative algorithm that takes into account factors such as bandwidth, power, and computational resources.  Results from numerical simulations demonstrate that the proposed algorithm can reduce energy consumption compared to traditional FL methods up to 51% reduction.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3