Research Progress on Deep Learning Based Defect Detection Technology for Solar Panels

Author:

Wang Yuxin,Guo Jiangyang,Qi Yifeng,Liu Xiaowei,Han Jiangning,Zhang Jialiang,Zhang Zhi,Lian Jianguo,Yin Xiaoju

Abstract

INTRODUCTION: Based on machine vision technology to carry out photovoltaic panel defect detection technology research to solve the photovoltaic panel production line automation online defect detection and localization problems. OBJECTIVES: The goal is to improve the accuracy of defect detection on PV cell production lines, increase the speed of defect detection to meet real-time monitoring needs, and improve production efficiency. METHODS: In this paper, three detection methods such as image processing based detection, traditional machine learning based detection and deep learning algorithm based detection are discussed and compared and analyzed respectively. Finally, it is concluded that deep learning based detection methods are more effective in comparison. Then, further analysis and simulation experiments are done by several deep learning based detection algorithms. RESULTS: The experimental results show that the YOLOv8 algorithm has the highest precision rate and maintains good results in terms of recall and mAP values. The detection speed is all less than other algorithms, 10.6ms. CONCLUSION: The inspection model based on yolov8 algorithm has the highest comprehensive performance and is the most suitable algorithmic model for detecting defects in solar panels in production lines.

Publisher

European Alliance for Innovation n.o.

Reference21 articles.

1. Yu Gu. Forecasting the development trend and analyzing the application prospect of renewable energy in China [D]. North China Electric Power University (Beijing), 2021.

2. Zhang X, Hou T, Hao Y, et al. Surface Defect Detection of Solar Cells Based on Multiscale Region Proposal Fusion Network[J]. IEEE Access, 2021, 9: 62093-62101

3. TSUZUKI K M, TSUTOMU Y, TAKEHIO T, et al. Inspection method and production method of solar cell module:US6271462B1 [P]. 2001-08-07.

4. ESQUIVEL O. Contrast imaging method for inspecting specular surface devices:US6433867B1 [P].2002-08-13.

5. SAWYERD E, KESSLERH K. Laser scanning of sola rcells for the display of cell operating characteristics and detection of cell defects [J].IEEE Transactions on Electron Devices, 1980, 27(4):864-872.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3