Fault Diagnosis of Distributed Energy Distribution Network Based on PSO-BP

Author:

Han Xiaokun,Jia Dongming,Dong Xiang,Chen Dongwei

Abstract

With the increasing scale of distribution network at distribution time, its complexity grows geometrically, and its fault diagnosis becomes more and more difficult. Aiming at the slow convergence and low accuracy of traditional backpropagation neural network in dealing with single-phase ground faults, the study proposes a backpropagation neural network based on improved particle swarm optimization. The model optimizes the weights and acceleration constants of the particle swarm algorithm by introducing dynamic coefficients to enhance its global and local optimization seeking ability. It is also applied in optimizing the parameters of backpropagation neural network and constructing the routing model and ranging model for fault diagnosis about distributed energy distribution network. The simulation results revealed that the maximum absolute error of the improved method is 0.08. While the maximum absolute errors of the traditional backpropagation neural network and the particle swarm optimized backpropagation neural network were 0.65 and 0.10, respectively. The fluctuation of the relative errors of the research method was small under different ranges of measurements. At 8.0 km, the minimum relative error was 0.39% and the maximum relative error was 2.81%. The results show that the improved method proposed in the study significantly improves the accuracy and stability of fault diagnosis and localization in distribution networks and is applicable to complex distribution network environments. The method has high training efficiency and fault detection capability and provides an effective tool for distribution network fault management.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3