A Performance Prediction Method for Talent Team Building Based on Integrated ISA-BP Neural Networks

Author:

Shen Shusheng,Deng Yansheng

Abstract

INTRODCTION: Objective, accurate and fair development of research and effective performance prediction methodology for the construction of the talent team is the current needs of the new era of innovation and reform and development of university management, as well as the need to improve the quality of scientific research and teaching level of the talent team.OBJCTIVES: To address the problems of irrational principle of indicator selection, incomplete system and imprecise methodology in the current research on performance prediction of talent team building.METHODS:This paper proposes a talent team construction performance prediction method based on intelligent optimization algorithm improving neural network with integrated learning as the framework. First of all, through the analysis of the current talent team construction performance prediction influencing factors selection principles, analyze the talent team construction performance management process, select the talent team construction performance prediction influencing factors, and construct the talent team construction performance analysis system; then, with the integrated learning as a framework, improve the neural network through the internal search optimization algorithm to construct the talent team construction performance prediction model; finally, through the simulation experiments to analyze and verify the effectiveness and superiority of the proposed method. The effective type and superiority of the proposed method are verified.RESULTS: The results show that the proposed method satisfies the real-time requirements while improving the prediction accuracy.CONCLUSION: This paper addresses the lack of precision in forecasting the performance of the talent pipeline and the lack of a sound analytical system.  

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3