Digital Investigation of Network Traffic Using Machine Learning

Author:

Chatterjee Saswati,Satpathy Suneeta,Nibedita Arpita

Abstract

In this study, an intelligent system that can gather and process network packets is built. Machine learning techniques are used to create a traffic classifier that divides packets into hazardous and non-malicious categories. The system utilizing resources was previously classified using a number of conventional techniques; however, this strategy adds machine learning., a study area that is currently active and has so far yielded promising results. The major aims of this paper are to monitor traffic, analyze incursions, and control them. The flow of data collection is used to develop a traffic classification system based on features of observed internet packets. This classification will aid IT managers in recognizing the vague assault that is becoming more common in the IT industry The suggested methods described in this research help gather network data and detect which threat was launched in a specific network to distinguish between malicious and benign packets. This paper’s major goal is to create a proactive system for detecting network attacks using classifiers based on machine learning that can recognize new packets and distinguish between hostile and benign network packets using rules from the KDD dataset. The algorithm is trained to employ the characteristics of the NSL-KDD dataset.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3