Author:
Ahmad Pir Noman,Khan Khalid
Abstract
Misinformation, false news, and various forms of propaganda have increased as a consequence of the rapid spread of information on social media. The Covid-19 spread deeply transformed citizens' day-to-day lives due to the overview of new methods of effort and access to facilities based on smart technologies. Social media propagandistic data and high-quality information on smart cities are the most challenging elements of this study. As a result of a natural language processing perspective, we have developed a system that automatically extracts information from bi-lingual sources. This information is either in Urdu or English (Ur or Eng), and we apply machine translation to obtain the target language. We explore different neural architectures and extract linguistic layout and relevant features in the bi-lingual corpus. Moreover, we fine-tune RoBERTa and ensemble BiLSM, CRF and BiRNN model. Our solution uses fine-tuned RoBERTa, a pretrained language model, to perform word-level classification. This paper provides insight into the model's learning abilities by analyzing its attention heads and the model's evaluation results.
Publisher
European Alliance for Innovation n.o.
Reference51 articles.
1. G. S. Jowett and V. O’donnell, Propaganda & persuasion. Sage publications, 2018.
2. G. D. S. Martino, S. Yu, A. Barrón-Cedeño, R. Petrov, and P. Nakov, “Fine-grained analysis of propaganda in news articles,” arXiv preprint arXiv:1910.02517, 2019.
3. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
4. A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
5. J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, “Fast and robust neural network joint models for statistical machine translation,” in proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2014, pp. 1370–1380.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献