Propaganda Detection And Challenges Managing Smart Cities Information On Social Media

Author:

Ahmad Pir Noman,Khan Khalid

Abstract

Misinformation, false news, and various forms of propaganda have increased as a consequence of the rapid spread of information on social media. The Covid-19 spread deeply transformed citizens' day-to-day lives due to the overview of new methods of effort and access to facilities based on smart technologies. Social media propagandistic data and high-quality information on smart cities are the most challenging elements of this study. As a result of a natural language processing perspective, we have developed a system that automatically extracts information from bi-lingual sources. This information is either in Urdu or English (Ur or Eng), and we apply machine translation to obtain the target language. We explore different neural architectures and extract linguistic layout and relevant features in the bi-lingual corpus. Moreover, we fine-tune RoBERTa and ensemble BiLSM, CRF and BiRNN model. Our solution uses fine-tuned RoBERTa, a pretrained language model, to perform word-level classification. This paper provides insight into the model's learning abilities by analyzing its attention heads and the model's evaluation results.

Publisher

European Alliance for Innovation n.o.

Subject

General Medicine

Reference51 articles.

1. G. S. Jowett and V. O’donnell, Propaganda & persuasion. Sage publications, 2018.

2. G. D. S. Martino, S. Yu, A. Barrón-Cedeño, R. Petrov, and P. Nakov, “Fine-grained analysis of propaganda in news articles,” arXiv preprint arXiv:1910.02517, 2019.

3. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

4. A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.

5. J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul, “Fast and robust neural network joint models for statistical machine translation,” in proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2014, pp. 1370–1380.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3