Employee Attrition: Analysis of Data Driven Models

Author:

Nandal Manju,Grover Veena,Sahu Divya,Dogra Mahima

Abstract

Companies constantly strive to retain their professional employees to minimize the expenses associated with recruiting and training new staff members. Accurately anticipating whether a particular employee is likely to leave or remain with the company can empower the organization to take proactive measures. Unlike physical systems, human resource challenges cannot be encapsulated by precise scientific or analytical formulas. Consequently, machine learning techniques emerge as the most effective tools for addressing this objective. In this paper, we present a comprehensive approach for predicting employee attrition using machine learning, ensemble techniques, and deep learning, applied to the IBM Watson dataset. We employed a diverse set of classifiers, including Logistic regression classifier, K-nearest neighbour (KNN), Decision Tree, Naïve Bayes, Gradient boosting, AdaBoost, Random Forest, Stacking, XG Boost, “FNN (Feedforward Neural Network)”, and “CNN (Convolutional Neural Network)” on the dataset. Our most successful model, which harnesses a deep learning technique known as FNN, achieved superior predictive performance with highest Accuracy, recall and F1-score of 97.5%, 83.93% and 91.26%.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3