An Effective analysis on various task scheduling algorithms in Fog computing

Author:

Choppara Prashanth,Mangalampalli Sudheer

Abstract

Fog computing involved as an extension of cloud and distributed systems fog nodes allowing data to be processed closer to the edge device and reduces the latency and bandwidth, storage capacity of IoT tasks. Task scheduling in fog computing involves allocating the tasks in fog nodes based on factors such as node availability, processing power, memory, and network connectivity. In task scheduling we have various scheduling algorithms that are nature inspired and bio-inspired algorithms but still we have latency issues because it is an NP-hard problem. This paper reviews the existing task scheduling algorithms modeled by metaheuristic, nature inspired and machine learning which address the various scheduling parameters like cost, response time, energy consumption, quality of services, execution time, resource utilization, makespan, throughput but still parameters like trust, fault tolerance not addressed by many of the existing authors. Trust and fault tolerance gives an impact and task scheduling trust is necessary to tasks and assign responsibility to systems, while fault tolerance ensures that the system can continue to operate even when failures occur. A balance of trust and fault tolerance gives a quality of service and efficient task scheduling therefore this paper done analysis on parameters like trust, fault tolerance and given research directions.

Publisher

European Alliance for Innovation n.o.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MTFP: matrix-based task-fog pairing method for task scheduling in fog computing;International Journal of Information Technology;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3