Efficient SDN-based Task offloading in fog-assisted cloud environment

Author:

Dash Bibhuti Bhusan,Satpathy Rabinarayan,Patra Sudhansu Shekar

Abstract

A distributed computing model called "fog computing" provides cloud-like services which is closer to end devices, and is rapidly gaining popularity. It offers cloud-like computing including storage capabilities, but with less latency and bandwidth requirements, thereby improving the computation capabilities of IoT devices and mobile nodes. In addition, fog computing offers advantages such as support for context awareness, scalability, dependability, and node mobility. Fog computing is frequently used to offload tasks from end devices' applications, enabling quicker execution utilizing the fog nodes' capabilities. Because of the changing nature of the fog environment, task offloading is challenging and the multiple QoS criteria that depend on the type of application being used. This article proposes an SDN-based offloading technique to optimize the task offloading technique for scheduling and processing activities generated by the Internet of Space Things (IoST) devices. The proposed technique utilizes Software-Defined Networking (SDN) optimization to dynamically manage network resources and to facilitate the deployment and execution of offloaded tasks. To model the system which computes the optimal virtual machines (VM) to be allocated in the fog network in order to actively process the offloaded tasks, the GI/G/r queueing model is utilised. This approach minimizes the delay-sensitive task queue and minimises the necessary number of VMs while minimising the waiting time for the fog layer. The findings of the simulation are used to verify the effectiveness of the proposed model.

Publisher

European Alliance for Innovation n.o.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Data Center Load Balancing in Cloud Computing with SDN Controller;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3