Abstract
In recent years, graph convolutional networks (GCNs) have gained widespread attention and applications in image classification tasks. While traditional convolutional neural networks (CNNs) usually represent images as a two-dimensional grid of pixels when processing image data, the classical model of graph neural networks (GNNs), GCNs, can effectively handle data with graph structure, such as social networks, recommender systems, and molecular structures. In this paper, we will introduce the problems that graph convolutional networks have had, such as over-smoothing, and the methods to solve them, and suggest some possible future directions.
Publisher
European Alliance for Innovation n.o.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献