The effect of silicon (Si) on the growth and nutritional status of Schizolobium amazonicum seedlings subjected to zinc toxicity

Author:

Albuquerque Gerson Diego Pamplona1,Batista Bruno Lemos2,Souza André Leandro Maia de2,Brito Ana Ecidia de Araújo3,Nascimento Vitor Resende3,Neto Cândido Ferreira de Oliveira3,Paiva Andressa Pinheiro de3,Teixeira Jessica Suellen Silva3,Júnior Mário Lopes da Silva3

Affiliation:

1. Instituto Ciberespacial, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil

2. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil

3. Instituto de Ciências Agrárias, Universidade Federal Rural da Amazônia, Belém, Pará, Brazil

Abstract

Zinc is an essential element to plants. However, excessive zinc levels can severely damage them. Schizolobium amazonicum is an Amazon native species that presents desirable features to remediate environments contaminated with heavy metals. Silicon has the beneficial effect of reducing the toxicity of different contaminants. The aim of the current study is to investigate the effect of Si on the growth and nutritional status of S. amazonicum seedlings subjected to zinc toxicity. The study followed a completely randomized design at 4 x 2 factorial arrangement based on four zinc (1, 150, 300 and 600 μM) and two silicon (0 and 1.5 mM) concentrations with five repetitions for 30 days. Increasing Zn concentrations in the nutrient solution reduced the growth of the plant and Ca, P, Mg, Fe, Mn and Cu contents in plant tissues, increased S concentrations and led to higher toxicity in the roots than shoot of S. amazonicum plants. Si addition to the nutrient solution increased plant growth and the absorption of the evaluated macro and micronutrients. Si increased plant tolerance level from 42.8 to 41.3% at 600 µM Zn, which suggested that this element mitigated the phytotoxic effects of the excess of zinc. Based on the tolerance index, the species presented medium and high tolerance to the evaluated zinc doses. Bioconcentration and translocation factors have indicated the low Zn-phytoextraction capacity of S. amazonicum and suggested that the species may be promising for Zn phytostabilization purposes.

Publisher

Southern Cross Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3