Morpho-physiological responses of chili peppers (Capsicum annuum) to short-term exposure of water-saturated rhizosphere

Author:

Siaga Erna1,Sakagami Jun-Ichi2,Lakitan Benyamin3,Yabuta Shin2,Hasbi Hasbi3,Bernas Siti Masreah3,Kartika Kartika1,Widuri Laily Ilman1

Affiliation:

1. Graduate School, Universitas Sriwijaya, Palembang 30139, Indonesia

2. Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 8900065, Japan

3. College of Agriculture, Universitas Sriwijaya, Inderalaya 30662, Indonesia

Abstract

Chili pepper is frequently grown by local farmers at riparian wetland during dry season in Indonesia. However, during the last decade, unpredictable distribution and intensity of rainfall have increasingly threatened chili pepper production at the wetlands due to untimely water-saturated rhizosphere (WSR) occurrences. WSR is a condition when all pores within root zone were filled with water. This condition can be simulated by adding water into growing substrate until a thin layer of water was visible above substrate surface. Two Indonesian varieties (Laris and Romario) and one Japanese variety (Takanotsume) were used in this study. Aim of this study was to evaluate morpho-physiological effects of short-term (4 days) WSR exposure in chili pepper. Results of this study revealed that roots suffered more than aerial organs as indicated by the increase of shoot/root ratio from 4.56 at pre-exposure to 7.03 at end of the exposure. Total leaf area significantly reduced since larger older leaves were replaced by newly developed smaller leaves. Relative water content (RWC) in all organs was decreased, but did not reach a detrimental level. Leaf RWC was decreased from 83.6% at pre-exposure to 77.8% after the exposure; however, leaf RWC was able to rebound to 81.5% after 7 days of recovery. Photosynthetic and transpiration rates sharply decreased, associated with decrease in stomatal conductance during WSR exposure. Chlorophyll fluorescence also sharply declined. Gas exchange parameters did not significantly recover after 7 days of recovery in all varieties. Meanwhile, SPAD values were not affected by WSR exposure.

Publisher

Southern Cross Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3