Estimating maturity by measuring pH, sugar, dry matter, water and vitamin C content of cashew apple (Anacardium occidentale) from remote spectral reflectance data using neural network

Author:

Assoi Eliane K.1,Bagui Olivier K.1,Kouakou Benoit K.1,Gbogbo Adolphe Y.1,Soro Doudjo2,Zoueu Jeremie T.1

Affiliation:

1. Laboratoire d’Instrumentation Image et Spectroscopie, INP-HB, DFR-GEE, BP 1093 Yamoussoukro, Côte d’Ivoire

2. Laboratoire des Procédés Industriels des Synthèses de l’Environnement et des Énergies Nouvelles, INP-HB, DFR-GCAA, BP 1093 Yamoussoukro, Côte d’Ivoire

Abstract

In agricultural sector, maturity is the main decision criterion for starting the harvest. This criterion is usually revealed by a number of parameters such as pH, sugar, dry matter, water and vitamin C, which are informative but technically tedious to measure. The cashew apple is the hypertrophied peduncle which is attached to the cashew nut. It is a nutritious (very juicy fruit (85 to 90% water), sweet (7 to 13% carbohydrates), acidic and vitamin C content) fruit with high therapeutic and medicinal properties. The cashew apple is used as a raw material for many industrial applications (juice and alcohol). This research was conducted as a preliminary step towards the development of a real-time remote sensing technique for assessing the quality of tropical fruits. Spectral acquisitions were carried out from intact cashew apple using optical system composed reflector coupled with spectrometer USB 4000 FL from Ocean Optics (350-1100 nm). Immediately after spectral acquisition, the samples were analyzed by using chemical methods (sugar content, dry matter content, water content, vitamin C and pH). Preprocessing treatment method, bootstrap method was required to create statistical new samples and to increase the number of samples required. This method was used to improve the predictive performance of calibration model. Statistical models of prediction were developed using an artificial neural network (ANN) method. The results obtained from the models built by ANN showed strong relationships between predicted and experimental values: (Rsquare = 0.9870, RMSE= 0.0262) for pH, (Rsquare=0.9869, RMSE=0.1392) for Sugar, (Rsquare=0.9726, RMSE=0.3333) for water content, (Rsquare=0.9703, RMSE=0.3464) for vitamin C and (Rsquare=0.9922, RMSE= 5.0304, RMSE=5.0304) for dry matter. These results confirm the potential of visible spectroscopy to predict quality parameters of cashew apples remotely and make decisions about best harvest time

Publisher

Southern Cross Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3