Modulation of narrowband and broadband gamma connectivity in retinal degeneration mice according to electrical stimulation pulse width

Author:

Agadagba Stephen Kugbere1,Chan Leanne Lai Hang2

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong, Hong Kong, People’s Republic of China

2. Department of Electrical Engineering, City University of Hong Kong, Hong Kong, People’s Republic of China; Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, People’s Republic of China

Abstract

Brain connectivity involves the structural, functional and effective communication between neurons across brain regions and is expressed in neuronal oscillations. Previous research has reported the evidence of two types of gamma oscillations namely the broadband gamma (30 Hz - 90 Hz) and narrowband gamma (55 Hz - 70 Hz) oscillations which have been implicated in excitatory and inhibitory network transmission. There is presently no systematic investigation of the relationship between electrical stimulation pulse width and narrow or broadband gamma oscillations in visual-deficient mice. In the current study, we set out to bridge this gap in knowledge by exploring the modulation of brain connectivity indices in broadband gamma and narrowband gamma oscillations in response to varying electrical stimulation pulse width in retinal degeneration (rd) mice. The results revealed that a low pulse width (0.5 ms/phase) strongly enhances coherence and directional connectivity of broadband and narrowband gamma oscillations in contra visual cortex and contra prefrontal cortex of rd mice. This study serves a crucial role in the design and utilisation of visual prostheses by contributing to the understanding of information transmission between different brain regions under retinal electrical stimulation in visual-deficit population.

Publisher

The Hong Kong Institution of Engineers

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3