Abstract
In this paper, we consider the Cauchy problem for parabolic Shilov equations with continuous bounded coefficients. In these equations, the inhomogeneities are continuous exponentially decreasing functions, which have a certain degree of smoothness by the spatial variable. The properties of the fundamental solution of this problem are described without using the kind of equation. The corresponding volume potential, which is a partial solution of the original equation, is investigated. For this Cauchy problem the correct solvability in the class of generalized initial data, which are the Gelfand and Shilov distributions, is determined.
Publisher
Vasyl Stefanyk Precarpathian National University
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献