Recovery of continuous functions of two variables from their Fourier coefficients known with error

Author:

Pozharska K.V.ORCID,Pozharskyi A.A.

Abstract

In this paper, we continue to study the classical problem of optimal recovery for the classes of continuous functions. The investigated classes $W^{\psi}_{2,p}$, $1 \leq p < \infty$, consist of functions that are given in terms of generalized smoothness $\psi$. Namely, we consider the two-dimensional case which complements the recent results from [Res. Math. 2020, 28 (2), 24-34] for the classes $W^{\psi}_p$ of univariate functions. As to available information, we are given the noisy Fourier coefficients $y^{\delta}_{i,j} = y_{i,j} + \delta \xi_{i,j}$, $\delta \in (0,1)$, $i,j = 1,2, \dots$, of functions with respect to certain orthonormal system $\{ \varphi_{i,j} \}_{i,j=1}^{\infty}$, where the noise level is small in the sense of the norm of the space $l_p$, $1 \leq p < \infty$, of double sequences $\xi=( \xi_{i,j} )_{i,j=1}^{\infty}$ of real numbers. As a recovery method, we use the so-called $\Lambda$-method of summation given by certain two-dimensional triangular numerical matrix $\Lambda = \{ \lambda_{i,j}^n \}_{i,j=1}^n$, where $n$ is a natural number associated with the sequence $\psi$ that define smoothness of the investigated functions. The recovery error is estimated in the norm of the space $C ([0,1]^2)$ of continuous on $[0,1]^2$ functions. We showed, that for $1\leq p < \infty$, under the respective assumptions on the smoothness parameter $\psi$ and the elements of the matrix $\Lambda$, it holds \[ \Delta( W^{\psi}_{2,p}, \Lambda, l_p)= \sup\limits_{ y \in W^{\psi}_{2,p} } \sup\limits_{\| \xi \|_{l_p} \leq 1} \Big\| y - \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \lambda_{i,j}^n ( y_{i,j} + \delta \xi_{i,j}) \varphi_{i,j} \Big\|_{C ([0,1]^2)} \ll \frac{ n^{\beta + 1 - 1/{p}}}{\psi(n)}.\]

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3