Expanding the function $\ln(1+\operatorname{e}^x)$ into power series in terms of the Dirichlet eta function and the Stirling numbers of the second kind
-
Published:2024-06-30
Issue:1
Volume:16
Page:320-327
-
ISSN:2313-0210
-
Container-title:Carpathian Mathematical Publications
-
language:
-
Short-container-title:Carpathian Math. Publ.
Author:
Li Wen-Hui,Lim Dongkyu,Qi Feng
Abstract
In the paper, using several approaches, the authors expand the composite function $\ln(1+\operatorname{e}^x)$ into power series around $x=0$, whose coefficients are expressed in terms of the Dirichlet eta function $\eta(1-n)$ and the Stirling numbers of the second kind $S(n,k)$.
Publisher
Vasyl Stefanyk Precarpathian National University