Abstract
The present note was written during the preparation of the talk at the International Conference dedicated to 70-th anniversary of Professor O. Lopushansky, September 16-19, 2019, Ivano-Frankivsk (Ukraine). We focus on two long standing open problems. The first one, due to Lindenstrauss and Rosenthal (1969), asks of whether every complemented infinite dimensional subspace of $L_1$ is isomorphic to either $L_1$ or $\ell_1$. The second problem was posed by Enflo and Rosenthal in 1973: does there exist a nonseparable space $L_p(\mu)$ with finite atomless $\mu$ and $1<p<\infty$, $p \neq 2$ having an unconditional basis? We analyze partial results and discuss on some natural ideas to solve these problems.
Publisher
Vasyl Stefanyk Precarpathian National University