Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys

Author:

Sukhova О.V.,Polonskyy V.A.,Ustinovа К.V.

Abstract

The formation of quasicrystalline decagonal phase and related crystalline phases was investigated by a combination of optical metallography, powder X-ray diffraction, atomic absorption spectroscopy and differential thermal analysis. Corrosion behaviour of quasicrystal Al–Ni–Fe alloys was studied by gravimetric and potentiodynamic polarization experiments in saline and acidic solutions at room temperature. The decagonal phase exhibits two modifications (AlFe- and AlNi-based) depending on the composition. In Al72Ni13Fe15 alloy it coexists with monoclinic Al5FeNi phase. In Al71.6Ni23Fe5.4 alloy crystalline Al13(Ni,Fe)4, Al3(Ni,Fe)2, and Al3(Ni,Fe) phases are seen adjacent to the quasicrystalline decagonal phase. Stability of quasicrystal phase up to room temperature was shown to be connected with its incomplete decomposition during cooling at a rate of 50 K/min. Al72Ni13Fe15 alloy has more than twice larger volume fraction of this phase compared to that of Al71.6Ni23Fe5.4 alloy. A dependence of microhardness on composition was observed as well, with Al72Ni13Fe15 alloy having substantially higher values. In acidic solutions, Al71.6Ni23Fe5.4 alloy showed the best corrosion performance. In saline solutions, the investigated alloys remained mainly untouched by corrosion. Mass-change kinetics exhibited parabolic growth rate. 

Publisher

Vasyl Stefanyk Precarpathian National University

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3